Structure Determination of $\mathbf{S n S b}_{2} \mathbf{S}_{4}$ and $\mathbf{S n S b}_{2} \mathbf{S e}_{4}$ by High-Resolution Electron Microscopy

By Piers P. K. Smith and John B. Parise
Research School of Chemistry, The Australian National University, GPO Box 4, Canberra, ACT 2601, Australia

(Received 24 April 1984; accepted 8 June 1984)

Abstract

The structure of $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$ has been refined from single-crystal X-ray data, using a starting model obtained from high-resolution transmission electron micrographs of the isostructural sulphide $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$. The metal-atom positions are resolved directly in [001] electron microscope images and the anion positions are inferred from related structures. The structure consists of ribbons of edge-sharing semioctahedra $M X_{5}$ parallel to z; these ribbons are linked by shared S/Se atoms. Crystal data: $\mathrm{SnSb}_{2} \mathrm{~S}_{4}: M_{r}=$ 490.4, Pnnm, $a=25.641$ (5), $b=20.381$ (4), $c=$ $3 \cdot 8973$ (5) $\AA, V=2037 \AA^{3}, Z=12, D_{x}=4 \cdot 80 \mathrm{Mg} \mathrm{m}^{-3}$; $\mathrm{SnSb}_{2} \mathrm{Se}_{4}: \quad M_{r}=678 \cdot 0, \quad$ Pnnm, $a=26 \cdot 610$ (3), $\quad b=$ 21.066 (3), $\quad c=4.0423$ (5) $\AA, \quad V=2266 \AA^{3}, \quad Z=12$, $D_{x}=5.96 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Мо $K \alpha, \quad \lambda=0.7107 \AA, \quad \mu=$ $29 \cdot 2 \mathrm{~mm}^{-1}, F(000)=3456, T=294 \mathrm{~K}, R=0.045$ for 1687 reflections. (The JCPDS File No. for $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ is 35-1496.)

Introduction

Studies of the phase equilibria and crystal chemistry of the system $\mathrm{Sn}-\mathrm{Sb}-\mathrm{S}$ have led to contradictory results (Moh, 1975). One reason for this has been the difficulty of obtaining single crystals of the Sn, Sb sulphosalts suitable for X-ray structure determination. As part of a study of the section $\mathrm{SnS}-\mathrm{Sb}_{2} \mathrm{~S}_{3}$ Smith (1984) determined the structure of $\mathrm{Sn}_{3} \mathrm{Sb}_{2} \mathrm{~S}_{6}$ by means of high-resolution transmission electron microscopy (HRTEM); the structure model was confirmed by X-ray powder diffraction and subsequently refined by neutron powder diffraction (Parise, Smith \& Howard, 1984). In the present paper we report the structure determination of $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ by HRTEM; single crystals of the sulphide could not be obtained, but a single-crystal X-ray refinement of the Se analogue $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$ has been carried out in order to confirm the structure model.

A phase of composition $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ was synthesized by Gaudin \& Hamlyn (1938) and Vogel \& Gilde (1949), although these authors did not report any diffraction data. Wang \& Eppelsheimer (1976) reported a unit cell for a monoclinic phase ' $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$, but a recent structure determination has shown that this phase has the composition $\mathrm{Sn}_{6} \mathrm{Sb}_{10} \mathrm{~S}_{21}$ (Parise \& Smith, 1984). The X-ray powder diffraction patterns
for phases of nominal composition $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ given by Bok \& de Wit (1963) and Sachdev \& Chang (1975) also correspond closely to that calculated for $\mathrm{Sn}_{6} \mathrm{Sb}_{10} \mathrm{~S}_{21}$. There is thus no previous substantiated report of the orthorhombic $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ described in the present paper.
In phase-equilibrium studies of the system SnSe $\mathrm{Sb}_{2} \mathrm{Se}_{3}$ Wobst (1968) and Gospodinov, Odin \& Novoselova (1975) reported the existence of a phase of composition $\mathrm{Sn}_{2} \mathrm{Sb}_{6} \mathrm{Se}_{11}$. The unit-cell parameters were not determined, but the limited X-ray powder diffraction data given by Gospodinov et al. (1975) indicate that this phase corresponds to the phase $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$ described in the present paper.

Experimental

(i) $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$

$\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ was synthesized from the elements combined in stoichiometric proportion in an evacuated silica ampoule. The charge was held at 1073 K for 15 h , then at 743 K for 400 h . Guinier powder X-ray diffraction and electron diffraction revealed the presence of minor $\mathrm{Sn}_{3} \mathrm{Sb}_{2} \mathrm{~S}_{6}$ and $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ in addition to $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$. Approximate unit-cell parameters were determined by electron diffraction; these were subsequently refined from the Guinier data, using the program LAZY PULVERIX (Yvon, Jeitschko \& Parthé, 1977) to calculate the powder pattern of the TEM-derived structure model in order to index the experimental Guinier pattern; cell refined from 25 reflections, $6.7^{\circ}<\theta<27^{\circ}, \mathrm{Cu} K \alpha_{1}, \lambda=1.54056 \AA$. Although the sample appears crystalline, Weissenberg photography showed the crystals to be multiple or twinned and a crystal suitable for single-crystal diffractometry could not be found.

Electron microscopy was carried out on a sample prepared from the composition $(\mathrm{SnS})_{s}\left(\mathrm{Sb}_{2} \mathrm{~S}_{3}\right)_{2}$, $778 \mathrm{~K}, 576 \mathrm{~h}$. The product contained $\mathrm{Sn}_{3} \mathrm{Sb}_{2} \mathrm{~S}_{6}$ and $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ in addition to $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$. To obtain interpretable structural information from HRTEM images the structure must be imaged along the shortest crystallographic repeat direction; since the material cleaves parallel to the z axis cleavage fragments could not be used for [001] imaging. Thin foils were therefore prepared by ion-beam bombardment and suitably oriented crystals were selected for microscopy.

HRTEM images were obtained with a JEOL 200CX electron microscope equipped with a high-resolution objective-lens pole piece ($C_{s}=1.2 \mathrm{~mm}$) and a doubletilt goniometer stage $\left(\pm 10^{\circ}\right)$, operating at an accelerating voltage of 200 kV . Exposure times were typically 8 s at a magnification of 550000 times. Images were recorded at approximately the Scherzer defocus ($\Delta f=$ $-1 \cdot 2 \sqrt{ } C_{s} \lambda=-660 \AA$) to give optimum phase contrast (Scherzer, 1949). Under these conditions the image of a sufficiently thin crystal corresponds to the projected charge density (PCD) of the structure, to a resolution limit of approximately $0.6 \times C_{s}^{1 / 4} \lambda^{3 / 4}(\approx 2.2 \AA)$. The limits of applicability of the PCD approximation are discussed by O'Keefe (1973) and Lynch, Moodie \& O'Keefe (1975). Fig. 1 shows the [001] HRTEM image of $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$.

From the published structures of the chemically related compounds $\mathrm{Sn}_{4} \mathrm{Sb}_{6} \mathrm{~S}_{13}$ (Jumas, Olivier-Fourcade, Philippot \& Maurin, 1980) and $\mathrm{Sn}_{6} \mathrm{Sb}_{10} \mathrm{~S}_{21}$ (Parise \& Smith, 1984) we can anticipate that the structure of $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ will contain ribbons of edgesharing semi-octahedra (pyramids) running parallel to the short crystallographic repeat direction. These ribbons, which correspond to layers of the SnS-type structure (B16), have metal-metal distances of approximately $4.3 \AA$ (parallel to the ribbon) and $3.6 \AA$ (diagonally across the ribbon) when projected along the $\sim 4 \AA$ axis. These distances are resolved in the HRTEM image, the metal atoms appearing as dark spots in the image of the thinnest part of the crystal. In Fig. 1 the metal positions are indicated in the outlined unit cell and they may be compared with those in the structure drawing (Fig. 2).
The metal positions were thus located directly by HRTEM and the anion positions were then inferred, assuming the structure to consist of B16-type ribbons. The heights of the atoms ($z=0$ or 0.5) are fixed by the requirement that the coordination polyhedra around the cations be either single- or double-capped

Fig. 1. [001] HRTEM image of $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$. The unit cell ($25.6 \times$ $20.4 \AA$) is outlined at lower right with the 36 metal-atom sites indicated by dots: cf. Fig. 2. The inset (left) is a computed image assuming the structure refined for $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$.
trigonal prisms, as in $\mathrm{Sn}_{4} \mathrm{Sb}_{6} \mathrm{~S}_{13}$ and $\mathrm{Sn}_{6} \mathrm{Sb}_{10} \mathrm{~S}_{21}$. The resulting structure model (Fig. 2) requires that the phase have the composition $M_{3} X_{4}$ and space group Pnnm. The symmetry was confirmed by electron diffraction of $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ and by X-ray diffraction of the Se analogue (see below). Peak intensities on the Guinier pattern of $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ were measured with a Joyce-Loebl scanning microdensitometer. The intensities agree well with those calculated assuming the final atomic positions determined for the selenide.*

Further confirmation of the structure of $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ is given by the calculated HRTEM image (Fig. 1, inset). The simulated image was computed by means of the multislice method (Cowley \& Moodie, 1957; Goodman \& Moodie, 1974), using a suite of programs written by Anstis (1983). The multislice is calculated using the algorithm of Ishizuka \& Uyeda (1977) and includes 2795 diffracted beams. The best match with the experimental image is obtained with a crystal thickness of $20 \AA$ and an objective-lens defocus of $-575 \AA$, although the calculated image changes only slightly for values of the defocus between - 500 and $-650 \AA$. Since the structure model is confirmed by X-ray diffraction we have not attempted to match experimental and computed images for thicker crystals or for other defocus values.

(ii) $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$

The binary selenides SnSe and $\mathrm{Sb}_{2} \mathrm{Se}_{3}$ are isostructural with the corresponding sulphides, suggesting that the ternary compounds $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$ and $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ may be isostructural. We therefore synthesized $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$ in an attempt to obtain single crystals for X-ray diffractometry. Evacuated silica ampoule; Sn, Sb and Se in stoichiometric ratio; 1123 K for 4 h then 813 K for 120 h . The Guinier pattern of the product was indexed assuming the structure model derived

Fig. 2. The structure of $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$ and $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ projected on (001); coordinates from the selenide refinement. Small circles $\mathrm{Sn} / \mathrm{Sb}$, large circles S / Se : open circles $z=0$, filled circles $z=0.5$.

Table 1. Final atom parameters $\left(\times 10^{4}\right)$ for $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$; e.s.d.'s 1×10^{-4} for positional parameters and 5×10^{-4} for thermal parameters; e.s.d.'s for $U_{\text {eq }}$ estimated according to the recommendations of Schomaker \& Marsh (1983)

	$U_{\text {eq }}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right)$.			
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
$\boldsymbol{M}(1)^{*}$	86	5903	0	203
M(2)	1265	4256	0	283
$M(3)$	1434	6057	$\frac{1}{2}$	278
$\boldsymbol{M}(4)$	2549	4485	2	394
M(5)	3702	5852	0	199
M ${ }^{(6)}$	5432	5678	0	218
$M(7)$	2785	7359	$\frac{1}{2}$	471
M(8)	4647	7105	2	286
$\boldsymbol{M}(9)$	1406	8134	0	340
$\mathrm{Se}(1)$	9671	6579	$\frac{1}{2}$	204
$\mathrm{Se}(2)$	769	5119	\%	167
$\mathrm{Se}(3)$	1787	3612	$\frac{1}{2}$	173
Se(4)	872	6655	0	164
$\mathrm{Se}(5)$	1969	5138	0	168
$\mathrm{Se}(6)$	2913	3477	0	161
$\mathrm{Se}(7)$	3021	5977	$\frac{1}{2}$	160
Se (8)	4610	5834	2	158
$\mathrm{Se}(9)$	6158	5607	$\frac{1}{2}$	145
$\mathrm{Se}(10)$	2206	6961	0	178
$\mathrm{Se}(11)$	3865	7065	0	160
$\mathrm{Se}(12)$	5488	6904	0	158

* $(\mathrm{Sn}, \mathrm{Sb})$ distributed randomly over the nine available metal (M) sites.
for the sulphide. The cell parameters were refined from the Guinier data ($\mathrm{Cu} \mathrm{K} \alpha_{1}, \lambda=1.54056 \AA$, 24 reflections, $13^{\circ}<\theta<28^{\circ}$).

Weissenberg and precession photographs confirmed the assignment of space group Pnnm and were used to check the quality of the crystal (needle-shaped fragment $0.05 \times 0.02 \times 0.26 \mathrm{~mm}$) selected for data collection. Philips PW 1100 diffractometer. 2917 reflections measured in the range $2^{\circ}<2 \theta<50^{\circ}$, $(\sin \theta / \lambda)_{\max }=0 \cdot 6 \AA^{-1}$. Following corrections for Lorentz factor, polarization and absorption ($\bar{T}_{\text {max }}=$ $0.54, \bar{T}_{\text {min }}=0.27$) symmetry-equivalent reflections were averaged to yield 2108 unique data with $F_{\text {obs }}>$ $0 \cdot 0$. Of these, 421 with $F_{\text {obs }}<2 \sigma\left(F_{\text {obs }}\right)$ were excluded from the refinement. $R_{\text {int }}$ (Sheldrick, 1976) from merging equivalent reflections was 0.044 .

The structure derived from the HRTEM images of $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ was used as a starting point for the leastsquares refinement. Initial isotropic refinement confirmed the model to be correct and the final calculation assuming anisotropic thermal motion for all atoms converged on the discrepancy indices $R=$ 0.045 and $R_{w}=0.036$. The individual reflection weights were $\left[\sigma^{-2}\left(F_{\text {obs }}\right)\right]$. In the final cycle $(\Delta / \sigma)_{\max }=0 \cdot 1$. The final atomic parameters are given in Table 1.*

[^0]Table 2. Selected interatomic distances (\AA) for $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$

M(1)-Se(4)	2.624 (3)	$M(6)-\mathrm{Se}(12)$	2.587 (3)
$-\mathrm{Se}(1) \times 2$	$2 \cdot 708$ (2)	$-\mathrm{Se}(9) \times 2$	2.800 (2)
$-\mathrm{Se}(2) \times 2$	$3 \cdot 181$ (2)	$-\mathrm{Se}(8) \times 2$	2.996 (2)
$-\mathrm{Se}(2) \times 2$	3.728 (3)	$-\mathrm{Se}(8) \times 2$	3.774 (2)
$M(2)-\mathrm{Se}(5)$	2.638 (3)	$M(7)-\mathrm{Se}(10) \times 2$	2.676 (3)
$-\mathrm{Se}(3) \times 2$	2.803 (2)	-Se(7)	2.978 (2)
$-\mathrm{Se}(2) \times 2$	$3 \cdot 022$ (2)	-Se(6)	2.999 (2)
$-\mathrm{Se}(1) \times 2$	$3 \cdot 658$ (3)	$-\mathrm{Se}(3) \times 2$	$3 \cdot 514$ (2)
		$-\mathrm{Se}(11) \times 2$	$3 \cdot 568$ (2)
$M(3)-\mathrm{Se}(2)$	$2 \cdot 653$ (3)		
$-\mathrm{Se}(4) \times 2$	$2 \cdot 812$ (2)	M(8)-Se(8)	2.677(3)
$-\mathrm{Se}(5) \times 2$	$3 \cdot 140$ (2)	$-\mathrm{Se}(11) \times 2$	2.902 (2)
$-\mathrm{Se}(10) \times 2$	$3 \cdot 454$ (2)	$-\mathrm{Se}(12) \times 2$	3.045 (2)
		$-\mathrm{Se}(1) \times 2$	$3 \cdot 433$ (2)
M(4)-Se(3)	2.737 (3)		
$-\mathrm{Se}(5) \times 2$	2.891 (2)	M (9)-Se(9)	2.733 (3)
$-\mathrm{Se}(6) \times 2$	3.087 (2)	$-\mathrm{Se}(6) \times 2$	$2 \cdot 809$ (2)
$-\mathrm{Se}(7)$	3.385 (2)	$-\mathrm{Se}(12) \times 2$	$3 \cdot 172$ (2)
-Se(9)	$3 \cdot 446$ (2)	-Se(10)	$3 \cdot 262$ (3)
		-Se(4)	$3 \cdot 424$ (3)

The maximum and minimum values in the final difference Fourier map were $2 \cdot 2$ and $-2 \cdot 6 \mathrm{e} \AA^{-3}$. These features were close to the metal positions, indicating slight inadequacies in either the disordered Sn, Sb distribution over the nine available metal sites, the modelling of thermal motion, or the absorption correction. An ordered arrangement of Sn and Sb based on the distribution of peaks in the difference map failed to improve the overall fit of the model to the observed data. Similarly, small changes in the values used for the crystal size failed to improve the overall fit significantly. The difficulty in measuring the two smallest dimensions of the crystal results in uncertainty in the absorption correction.

Analytical expressions for the scattering factors were taken from International Tables for X-ray Crystallography (1974). Calculations were carried out on the Australian National University Univac 1100/82 computer; programs used were SHELX76 (Sheldrick, 1976) and ORTEP (Johnson, 1965).

Discussion

Fig. 2 shows the final structure of $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$ projected on (001); bond lengths are given in Table 2. As assumed in deriving the structure, it is built from ribbons of edge-sharing semi-octahedra that extend along z. These ribbons are hinged together by sharing of Se atoms between adjacent ribbons. Within each ribbon the cations are offset from the centre of the pyramid base, giving $[1+2+2]$ coordination; the ribbons are thus very similar to the infinite sheets of the SnS structure (Wiedemeier \& von Schnering, 1978).

With the exception of $M(7)$, the shortest bond is that between the cation and the summit of the pyramid.

The right-hand part of Fig. 2 shows how the juxtaposition of these basic structural units gives rise to trigonal-prismatic coordination of all the cations by Se , the prisms being represented by dot shading (prism axis parallel to z) or line shading [prism axis in (001)]. For all cations except $M(7)$ the prism has a single cap formed by the short M-Se bond of the pyramid summit. Fig. 3 shows a typical example, the coordination polyhedron of $M(1)$. Notice that for $M(4)$ and $M(9)$ the monocapped prism has its axis in (001).

Cation $M(7)$ is shared between two hinged ribbons and it consequently lies in a bicapped trigonal prism of Se atoms (Fig. 4). Unlike the other metal atoms, which lie close to the basal plane of the pyramidal cap, $M(7)$ lies aproximately on the bisector of the acute angle between the two articulated ribbons. The shortest M-Se distances for $M(7)$ are thus the two equivalent distances to the shared $\mathrm{Se}(10)$, rather than to the capping Se atoms. It is interesting to note that $M(7)$ has the largest and most anisotropic thermal parameter of all the metal atoms, with the principal vibration direction along a line joining the two prism caps $\mathrm{Se}(6)$ and $\mathrm{Se}(7) . M(7)$ is thus directly analogous to $M(6)$ of $\mathrm{Sn}_{4} \mathrm{Sb}_{6} \mathrm{~S}_{13}$ (Jumas et al., 1980) and M(14) of $\mathrm{Sn}_{6} \mathrm{Sb}_{10} \mathrm{~S}_{21}$ (Parise \& Smith, 1984) which also lie in bicapped prisms and have elevated anisotropic thermal parameters. In all three structures this situation arises where the metal atom is shared between two hinged ribbons.

Fig. 3. Coordination polyhedron of $M(1)$.

Fig. 4. Coordination polyhedron of $M(7)$.

The structure refinement of $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$ confirms the structure model derived for $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ by HRTEM. It is clear from this and from the powder diffraction and electron diffraction data that the two compounds are isostructural, although only the selenide structure has been refined. The final atomic parameters for the selenide are very close to those of the initial model, with a mean displacement from the original positions of $0.40 \AA$ for the cations and $0.21 \AA$ for the anions. The accuracy in the initial model is greater than could be obtained from HRTEM alone and depends on information concerning related structures in the system $\mathrm{SnS}-\mathrm{Sb}_{2} \mathrm{~S}_{3}$, particularly for the location of the anions. However, HRTEM has now been used to determine the initial structure model for $\mathrm{Sn}_{3} \mathrm{Sb}_{2} \mathrm{~S}_{6}$ (Smith, 1984) and $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$ and is clearly a powerful method for solving structures in cases where single crystals cannot be grown and where there is a suitable short projection axis.

We thank Dr G. B. Robertson for providing diffractometer time.

References

ANSTIS, G. R. (1983). Multislice Program Package. Research School of Chemistry, Australian National Univ.
Bok, L. D. C. \& de Wit, J. H. (1963). Z. Anorg. Allg. Chem. 324, 162-167.
Cowley, J. M. \& Moodie, A. F. (1957). Acta Cryst. 10, 609-619. Gaudin, A. M. \& Hamlyn, W. T. (1938). Econ. Geol. 33, 868-888. Goodman, P. \& Moodie, A. F. (1974). Acta Cryst. A30, 280-290. Gospodinov, G. G., Odin, I. N. \& Novoselova, A. F. (1975). Inorg. Mater. (USSR), 11, 1033-1035.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Ishizuka, K. \& Uyeda, N. (1977). Acta Cryst. A33, 740-749.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Jumas, J. C., Olivier-Fourcade, J., Philippot, E. \& Maurin, M. (1980). Acta Cryst. B36, 2940-2945.

Lynch, D. F., Moodie, A. F. \& O’Keefe, M. A. (1975). Acta Cryst. A31, 300-307.
Мон, G. H. (1975). Chem. Erde, 34, 201-238.
O'KeEfe, M. A. (1973). Acta Cryst. A29, 389-401.
Parise, J. B. \& Smith, P. P. K. (1984). Acta Cryst. C40, 1772-1776.
Parise, J. B., Smith, P. P. K. \& Howard, C. J. (1984). Mater. Res. Bull. 19, 503-508.
Sachdev, S. C. \& Chang, L. L. Y. (1975). Econ. Geol. 70, 1111-1122.
Scherzer, O. (1949). J. Appl. Phys. 20, 20-29.
Schomaker, V. \& Marsh, R. E. (1983). Acta Cryst. A39, 819820.

Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination. Cambridge Univ.
Smith, P. P. K. (1984). Acta Cryst. C40, 581-584.
Vogel, R. \& Gilde, W. (1949). Z. Metallkd. 40, 121-126.
Wang, N. \& Eppelsheimer, D. (1976). Chem. Erde, 35, 179-184.
Wiedemeier, H. \& von Schnering, H. G. (1978). Z. Kristallogr. 148, 295-303.
Wobst, M. (1968). J. Less-Common Met. 14, 77-81.
Yvon, K., Jeitschko, W. \& Parthé, E. (1977). J. Appl. Cryst. 10, 73-74.

[^0]: * Lists of structure factors and anisotropic thermal parameters for $\mathrm{SnSb}_{2} \mathrm{Se}_{4}$, together with powder diffraction data for $\mathrm{SnSb}_{2} \mathrm{~S}_{4}$, have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39569 (14 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

